Hi!
I am a tenure-track assistant professor at CIMeC and DISI, University of Trento (Italy). I spend my time pondering open problems in AI and Machine Learning and coming up with practical (and sometimes sound) solutions for them. I have previously worked as a post-doc with Andrea Passerini and Fausto Giunchiglia at DISI, with Luc De Raedt at KU Leuven (Belgium), and with Luciano Serafini at FBK (Trento, Italy). I obtained my Ph.D. from the University of Trento in 2014.
On Google Scholar, my pen name is “uaQCyXkAAAAJ”. All the code I write is available on GitHub. Sometimes I tweet and retweet AI and ML-related content @looselycorrect.
I maintain a curated list of literature on interacting with Machine Learning models via explanations in the awesome explanatory supervision repo. Contributions are welcome!
Contacting Me
Feel free to contact me at: name.surname@unitn.it
Research Topics
I am interested in AI and Machine Learning, and specifically in ensuring that models learned from data are aligned with the specifications, requirements, and preferences of their users, also out-of-distribution, in interactive and lifelong settings. I am attacking this problem through a combination of:
- Explainable Artificial Intelligence,
- Self-Explainable / Concept-Based Models,
- Neuro-Symbolic Integration / Statistical Relational Learning,
- Interactive Machine Learning,
- Large Language Models / Foundation Models,
- Constraints and Constraint Learning,
- Preference Elicitation.
If you are a student and you are interested in these topics, have a look at the theses and projects page.
Publications & Preprints
2024
-
Learning To Guide Human Decision Makers With Vision-Language Models. Debodeep Banerjee, Stefano Teso, Burcu Sayin, Andrea Passerini. Under submission. [preprint]
-
Towards Logically Consistent Language Models via Probabilistic Reasoning. Diego Calanzone, Stefano Teso, Antonio Vergari. ICLR 2024 Workshop on Reliable and Responsible Foundation Models. [preprint]
-
BEARS Make Neuro-Symbolic Models Aware of their Reasoning Shortcuts. Emanuele Marconato, Samuele Bortolotti, Emile van Krieken, Antonio Vergari, Andrea Passerini, Stefano Teso. Spotlight at UAI 2024 [preprint, code]
2023
-
Not all neuro-symbolic concepts are created equal: Analysis and mitigation of reasoning shortcuts. Emanuele Marconato, Stefano Teso, Antonio Vergari, Andrea Passerini. NeurIPS 2023. [paper, code]
-
Interpretability Is in the Mind of the Beholder: A Causal Framework for Human-Interpretable Representation Learning Emanuele Marconato, Andrea Passerini, Stefano Teso. Entropy. [paper, preprint]
-
How Faithful are Self-Explainable GNNs? Marc Christiansen, Lea Villadsen, Zhiqiang Zhong, Stefano Teso, Davide Mottin. LOG 2023. [paper, code]
-
Learning to Guide Human Experts via Personalized Large Language Models. Debodeep Banerjee, Stefano Teso, Andrea Passerini. Workshop @ Conference. [paper]
-
To Transfer or Not to Transfer and Why? Meta-Transfer Learning for Explainable and Controllable Cross-Individual Activity Recognition. Qiang Shen, Stefano Teso, Fausto Giunchiglia, Hao Xu. Electronics. [paper]
-
Neuro-Symbolic Reasoning Shortcuts: Mitigation Strategies and their Limitations. Emanuele Marconato, Stefano Teso, Andrea Passerini. NeSy Workshop 2023. [paper]
-
Neuro Symbolic Continual Learning: Knowledge, Reasoning Shortcuts and Concept Rehearsal. Emanuele Marconato, Gianpaolo Bontempo, Elisa Ficarra, Simone Calderara, Andrea Passerini, Stefano Teso. ICML 2023. [paper], code]
-
Semantic Loss Functions for Neuro-Symbolic Structured Prediction. Kareem Ahmed, Stefano Teso, Paolo Morettin, Luca Di Liello, Pierfrancesco Ardino, Jacopo Gobbi, Yitao Liang, Eric Wang, Kai-Wei Chang, Andrea Passerini, Guy Van den Broeck. Compendium of Neurosymbolic Artificial Intelligence. [book chapter]
-
Personalized Algorithmic Recourse with Preference Elicitation. Giovanni De Toni, Paolo Viappiani, Stefano Teso, Bruno Lepri, Andrea Passerini. TMLR. [paper, code]
-
Leveraging Explanations in Interactive Machine Learning: An Overview. Stefano Teso, Öznur Alkan, Wolfgang Stammer, Elizabeth Daly. Frontiers in Artificial Intelligence. [paper, preprint]
2022
-
Machine Learning for Combinatorial Optimisation of Partially-Specified Problems: Regret Minimisation as a Unifying Lens. Stefano Teso, Laurens Bliek, Andrea Borghesi, Michele Lombardi, Neil Yorke-Smith, Tias Guns, Andrea Passerini. [preprint]
-
Concept-level Debugging of Part-Prototype Networks. Andrea Bontempelli, Stefano Teso, Fausto Giunchiglia, Andrea Passerini. [preprint, code]
-
Learning Max-SAT from Contextual Examples for Combinatorial Optimisation. Mohit Kumar, Samuel Kolb, Stefano Teso, Luc De Raedt. Artificial Intelligence. [paper]
-
Human-in-the-loop Handling of Knowledge Drift. Andrea Bontempelli, Fausto Giunchiglia, Andrea Passerini, Stefano Teso. Data Mining and Knowledge Discovery. [pdf, code]
-
GlanceNets: Interpretabile, Leak-proof Concept-based Models. Emanuele Marconato, Andrea Passerini, Stefano Teso. NeurIPS 2022. [pdf, code]
-
Semantic Probabilistic Layers for Neuro-Symbolic Learning. Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, Antonio Vergari. NeurIPS 2022. [pdf]
-
Machine Learning for Utility Prediction in Argument-Based Computational Persuasion. Ivan Donadello, Anthony Hunter, Stefano Teso, Mauro Dragoni. AAAI 2022. [pdf]
-
Federated Multi-Task Attention for Cross-Individual Human Activity Recognition. Qiang Shen, Haotian Feng, Rui Song, Stefano Teso, Fausto Giunchiglia, Hao Xu. IJCAI 2022. [pdf]
-
Catastrophic Forgetting in Continual Concept Bottleneck Models. Emanuele Marconato, Gianpaolo Bontempo, Stefano Teso, Elisa Ficarra, Simone Calderara, Andrea Passerini. ICIAP 2021. [paper]
-
Toward a Unified Framework for Debugging Concept-based Models. Andrea Bontempelli, Fausto Giunchiglia, Andrea Passerini, Stefano Teso. Workshop on Interactive Machine Learning @ AAAI 2022. [pdf]
-
Efficient and Reliable Probabilistic Interactive Learning with Structured Outputs. Stefano Teso, Antonio Vergari. Workshop on Interactive Machine Learning @ AAAI 2022. [pdf]
-
Lifelong Personal Context Recognition. Andrea Bontempelli, Marcelo Rodas Britez, Xiaoyue Li, Haonan Zhao, Luca Erculiani, Stefano Teso, Andrea Passerini, Fausto Giunchiglia. Workshop on Human-Centered Design of Symbiotic Artificial Intelligence @ HHAI 2022. [pdf]
2021
-
Bandits for Learning to Explain from Explanations Frey Behrens, Stefano Teso, Davide Mottin. [preprint, code]
-
Learning Modulo Theories for Constructive Preference Elicitation. Paolo Campigotto, Stefano Teso, Roberto Battiti, Andrea Passerini. Artificial Intelligence. [paper]
-
Putting Human Behavior Predictability in Context. Wanyi Zhang, Qiang Shen, Stefano Teso, Bruno Lepri, Andrea Passerini, Ivano Bison, Fausto Giunchiglia. EPJ Data Science. [pdf]
-
Interactive Label Cleaning with Example-based Explanations. Stefano Teso, Andrea Bontempelli, Fausto Giunchiglia, Andrea Passerini. NeurIPS 2021. [pdf, code]
-
A Compositional Atlas of Tractable Circuit Operations: From Simple Transformations to Complex Information-Theoretic Queries. Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, Guy Van den Broeck. NeurIPS 2021. [pdf]
-
Learning Mixed-Integer Linear Programs from Contextual Examples. Mohit Kumar, Stefano Kolb, Luc De Raedt, Stefano Teso. Data Science Meets Optimization Workshop @ IJCAI 2021. [pdf]
-
Neuro-Symbolic Constraint Programming for Structured Prediction. Paolo Dragone, Stefano Teso, Andrea Passerini. Workshop on Neural-Symbolic Learning and Reasoning @ IJCLR 2021. [pdf]
-
Co-creating Platformer Levels with Constrained Adversarial Networks. Paolo Morettin, Andrea Passerini, Stefano Teso. Workshop on Human-AI Co-Creation with Generative Models @ IUI 2021. [pdf]
2020
-
Machine Guides, Human Supervises: Interactive Learning with Global Explanations. Teodora Popordanoska, Mohit Kumar, Stefano Teso. [preprint]
-
Making Deep Neural Networks Right for the Right Scientific Reasons by Interacting with their Explanations Patrick Schramowski, Wolfgang Stammer, Stefano Teso, Anna Brugger, Franziska Herbert, Xiaoting Shao, Hans-Georg Luigs, Anne-Katrin Mahlein, Kristian Kersting. Nature Machine Intelligence. [paper]
-
Predictive Spreadsheet Autocompletion with Constraints Samuel Kolb, Stefano Teso, Anton Dries, Luc De Raedt. Machine Learning. [pdf]
-
Challenges in Interactive Machine Learning. Stefano Teso, Oliver Hinz. Künstliche Intelligenz. [pdf]
-
Learning Weighted Model Integration Distributions. Paolo Morettin, Samuel Kolb, Stefano Teso, Andrea Passerini. AAAI 2020. [pdf]
-
Learning Max-SAT from contextual examples for combinatorial optimisation. Mohit Kumar, Samuel Kolb, Stefano Teso, Luc De Raedt. AAAI 2020 [pdf]
-
Efficient Generation of Structured Objects with Constrained Adversarial Networks Luca Di Liello, Piero Ardino, Jacopo Gobbi, Paolo Morettin, Stefano Teso, Andrea Passerini. NeurIPS 2020. [pdf]
-
Learning in the Wild with Incremental Skeptical Gaussian Processes. Andrea Bontempelli, Stefano Teso, F Giunchiglia, Andrea Passerini. IJCAI 2020 [pdf, code]
-
Human-Machine Collaboration for Democratizing Data Science. Clement Gautrais, Yann Dauxais, Stefano Teso, Samuel Kolb, Gust Verbruggen, Luc De Raedt. Human-Like Machine Intelligence. [pdf]
-
VisualSynth: Democratizing Data Science in Spreadsheets. Clement Gautrais, Yann Dauxais, Samuel Kolb, Architt Jain, Mohit Kumar, Stefano Teso, Elia Van Wolputte, Gust Verbruggen, Luc De Raedt. ECML-PKDD 2020 Applied Data Science and Demo Track. [paper]
-
Toward Machine-Guided, Human-Initiated Explanatory Interactive Learning. Teodora Popordanoska, Mohit Kumar, Stefano Teso. TAILOR Workshop @ ECAI 2020. [pdf]
-
Does Symbolic Knowledge Prevent Adversarial Fooling? Stefano Teso. Workshop on Statistical Relational AI @ NeurIPS 2020. [pdf]
-
Multi-Modal Subjective Context Modelling and Recognition. Qiang Shen, Stefano Teso, Wanyi Zhang, Hao Xu, Fausto Giunchiglia. Workshop on Modelling and Reasoning in Context @ ECAI 2020. [pdf]
2019
-
Combining learning and constraints for genome-wide protein annotation Stefano Teso, Luca Masera, Michelangeli Diligenti, Andrea Passerini. BMC Bioinformatics. [paper]
-
Constraint Learning: An Appetizer. Stefano Teso. Reasoning Web. Explainable Artificial Intelligence. [paper]
-
Explanatory Interactive Machine Learning. Stefano Teso, Kristian Kersting. AIES 2019 [pdf, code]
-
Acquiring Integer Programs from Data. Mohit Kumar, Stefano Teso, Luc De Raedt. IJCAI 2019. [pdf]
-
Learning Linear Programs from Data. Elias Arnold Schede, Samuel Kolb, Stefano Teso. ICTAI 2019. [paper]
-
Automating Personnel Rostering by Learning Constraints Using Tensors. Mohit Kumar, Stefano Teso, P De Causmaecker, Luc De Raedt. ICTAI 2019. [paper]
-
SynthLog: A Language for Synthesising Inductive Data Models. Yann Dauxais, Clement Gautrais, Anton Dries, Architt Jain, Samuel Kolb, Mohit Kumar, Stefano Teso, Elia Van Wolputte, Gust Verbruggen, Luc De Raedt. ECML-PKDD 2019. [paper]
-
Acquiring Non-Linear Constraints. Mohit Kumar, Stefano Teso, Luc De Raedt. EURO 2019.
-
Toward Faithful Explanatory Active Learning with Self-explainable Neural Nets. Stefano Teso. Workshop on Interactive Adaptive Learning @ ECML-PKDD 2019. [pdf, code]
2018
-
Constructive Preference Elicitation. Paolo Dragone, Stefano Teso, Andrea Passerini Frontiers in Robotics and AI. [pdf]
-
Learning Constraints from Examples. Luc De Raedt, Andrea Passerini, Stefano Teso. AAAI 2018. [pdf]
-
Constructive preference elicitation over hybrid combinatorial spaces. Paolo Dragone, Stefano Teso, Andrea Passerini. AAAI 2018. [pdf]
-
Decomposition Strategies for Constructive Preference Elicitation. Paolo Dragone, Stefano Teso, Mohit Kumar, Andrea Passerini. AAAI 2018. [pdf]
-
Learning SMT(LRA) constraints using SMT solvers. Samuel Kolb, Stefano Teso, Andrea Passerini, Luc De Raedt. IJCAI 2018. [pdf]
-
Elements of an Automatic Data Scientist. Luc De Raedt, Hendrick Blockeel, Samuel Kolb, Stefano Teso, Gust Verbruggen. IDA 2018. [paper]
-
Automating Layout Synthesis with Constructive Preference Elicitation. Luca Erculiani, Paolo Dragone, Stefano Teso, Andrea Passerini. ECML-PKDD 2018. [paper]
-
Pyconstruct: constraint programming meets structured prediction Paolo Dragone, Stefano Teso, Andrea Passerini. IJCAI 2018 (Demo Track). [pdf]
-
Constraint Learning using Tensors. Mohit Kumar, Stefano Teso, Patrick De Causmaecker, Luc De Raedt. EURO 2018.
2017
-
Structured Learning Modulo Theories. Stefano Teso, Roberto Sebastiani, Andrea Passerini. Artificial Intelligence. [paper]
-
Investigating the Association between Social Interactions and Personality States Dynamics D Gundogdu, AN Finnerty, J Staiano, Stefano Teso, Andrea Passerini, F Pianesi, … Royal Society Open Science. [paper]
-
Coactive Critiquing: Elicitation of Preferences and Features. Stefano Teso, Paolo Dragone, Andrea Passerini. AAAI 2017. [pdf]
-
Constructive Preference Elicitation for Multiple Users with Setwise Max-margin. Stefano Teso, Andrea Passerini, Paolo Viappiani. Algorithmic Decision Theory 2017. [paper]
2016
-
Rule Mining in Feature Space. Stefano Teso, Andrea Passerini. [preprint]
-
Constructive Preference Elicitation by Setwise Max-Margin Learning. Stefano Teso, Andrea Passerini, Paolo Viappiani. IJCAI 2016. [pdf]
-
Structured feedback for preference elicitation in complex domains. Stefano Teso, Paolo Dragone, Andrea Passerini. BeyondLabeler Workshop @ IJCAI 2016. [pdf]
-
Constructive layout synthesis via coactive learning Paolo Dragone, Luca Erculiani, Maria Teresa Chietera, Stefano Teso, Andrea Passerini. Constructive Machine Learning Workshop @ NeurIPS 2016. [pdf]
2015
-
Inducing Sparse Programs for Learning Modulo Theories. Stefano Teso, Andrea Passerini. Constructive Machine Learning Workshop @ ICML 2015. [pdf]
-
Constructive Learning Modulo Theories. Stefano Teso, Roberto Sebastiani, Andrea Passerini. Constructive Machine Learning Worshop @ ICML 2015. [pdf]
-
Predicting Virus Mutations through Statistical Relational Learning. Elisa Cilia, Stefano Teso, Sergio Ammendola, Tom Lenaerts, Andrea Passerini. BMC Bioinformatics. [pdf]
2014
-
Joint Probabilistic-Logical Refinement of Multiple Protein Feature Predictors. Stefano Teso, Andrea Passerini. BMC bioinformatics. [paper]
-
Improved Multi-level Protein–Protein Interaction Prediction with Semantic-Based Regularization. Claudo Sacca, Stefano Teso, Michelangeli Diligenti, Andrea Passerini BMC bioinformatics. [paper]
-
Hybrid Statistical Relational Learning with Optimization Modulo Theories. Stefano Teso, Roberto Sebastiani, Andrea Passerini. Constructive Machine Learning Workshop @ NeurIPS 2014. [pdf]
2013
-
Statistical relational learning for proteomics: function, interactions and evolution. Stefano Teso. Ph.D. Thesis. [pdf]
-
Ego-centric graphlets for personality and affective states recognition. Stefano Teso, Jacopo Staiano, Bruno Lepri, Andrea Passerini, Fabio Pianesi. International Conference on Social Computing 2013. [paper]
2012
- Predicting virus mutations through relational learning. Elisa Cilia, Stefano Teso, Sergio Ammendola, Tom Lenaerts, Andrea Passerini. AIMM 2012. [pdf]
2010
-
An on/off lattice approach to protein structure prediction from contact maps. Stefano Teso, Cristina Di Risio, Andrea Passerini, Roberto Battiti. IAPR International Conference on Pattern Recognition in Bioinformatics 2010. [pdf]
-
From on-going to complete activity recognition exploiting related activities. Carlo Nicolini, Bruno Lepri, Stefano Teso, Andrea Passerini. International Workshop on Human Behavior Understanding 2010. [paper]
2008
- Notes on stochastic simulation of chemical kinetics with cycle-leaping. Stefano Teso, Paola Lecca. Technical Report. [pdf]